

Benefits of NAEM Community

Conferences

Research

Networking

Publications

Actionable Strategies that Empower Corporate EHS&S Leaders to Make an Impact

A Diverse Community for EHS&S Leaders

Today's Speakers

Kelley Begin
Vice President, Air
Quality Technical
Practice Leader;
Woodard & Curran

Matthew Jones
Meteorologist, Project
Manager; Woodard &
Curran

Rick Love
Manager,
Environmental
Sustainability; United
Technologies Corp.

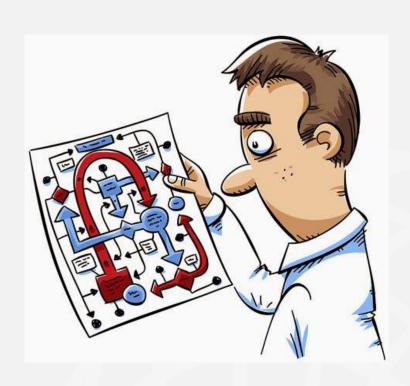
Michael Newman
Chemical Engineer,
Technical Manager;
Woodard & Curran

NAEM Webinar

New Ways to Communicate the Business Case for Air Quality

Your Speakers

- Kelley Begin: Techniques you can use to effectively communicate with different audiences
- Mike Newman: Fresh ideas for making air quality information relevant and meaningful
- Rick Love (UTC): Expert advice on how companies like yours have solved complicated air issues


Communicating Effectively in Air Quality Projects

Kelley Begin, Woodard & Curran

Communication is Critical to Project Success!

- Air permitting regulations are complicated
- Timing is critical
- Multiple stakeholders
- Communicate effectively to positively influence project implementation
- Miscommunications can delay or sink a project

Know Your Audience

- Who are you communicating with?
- What are their perspectives and priorities?
- What type of information do they need?
- What level of detail do they need?

Clear Purpose & Message

- Purpose of communication
- Clear message
 - > Keep message simple
 - Consider stakeholder perspectives
 - Organize information so audience doesn't have to work to find what's relevant to them

Method of Communication

- Depends on purpose and audience
- Meetings/calls
 - > Written agenda
 - > Minutes
- Written communications
 - > Formal/informal

Tips for Successful Air Permitting Projects

- Communicate realistic permitting timeline for project schedule
- Key to timely permit is regular communication with permitting engineer
 - > Provide timely, focused and clear responses to questions
 - > Vague or delayed responses can result in delays and/or miscommunications
 - Keep operational flexibility in mind
- Provide status updates to regulators, project team & senior management no surprises!
- Translate information into audience's language to avoid miscommunications

Making Air Quality Data Relevant & Meaningful

Mike Newman, Woodard & Curran

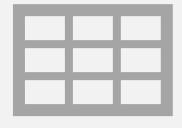
Typical Questions That Data Answers

Does the project pass all the air quality standards?

How much pollution in general is being emitted?

Where, when, and how often are the highest impacts occurring?

Are the data comprehensive enough to address other stakeholder concerns?

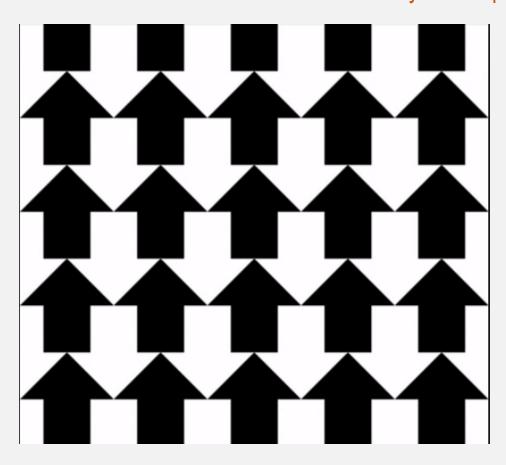

Tools for Data Communication

Maps
ArcGIS
QGIS
Google Earth

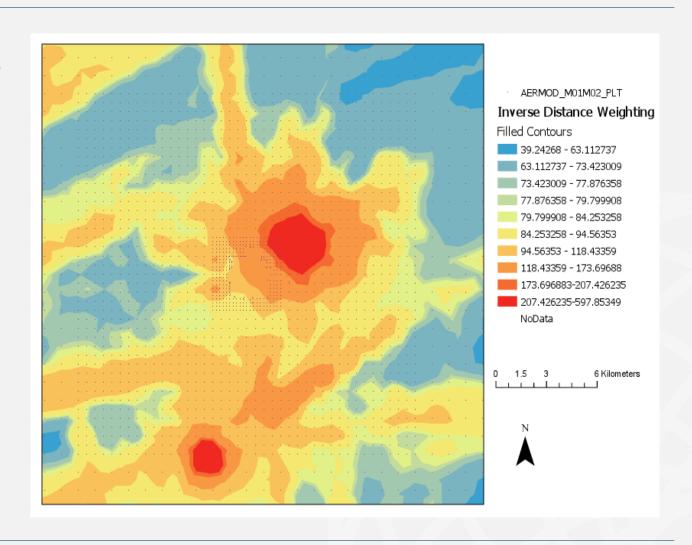
Graphs
Excel
Scripting Languages
(Python, Perl)
Statistica, R

TablesExcel vs Word

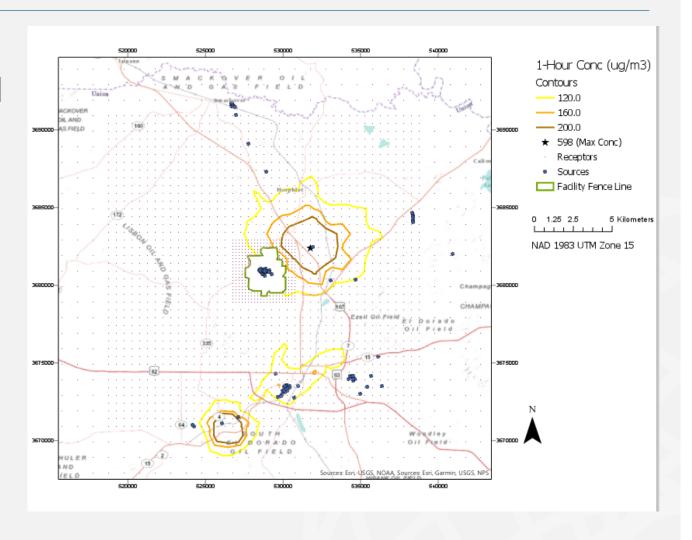
Biggest Pitfall: Lack of Context for Complex Data

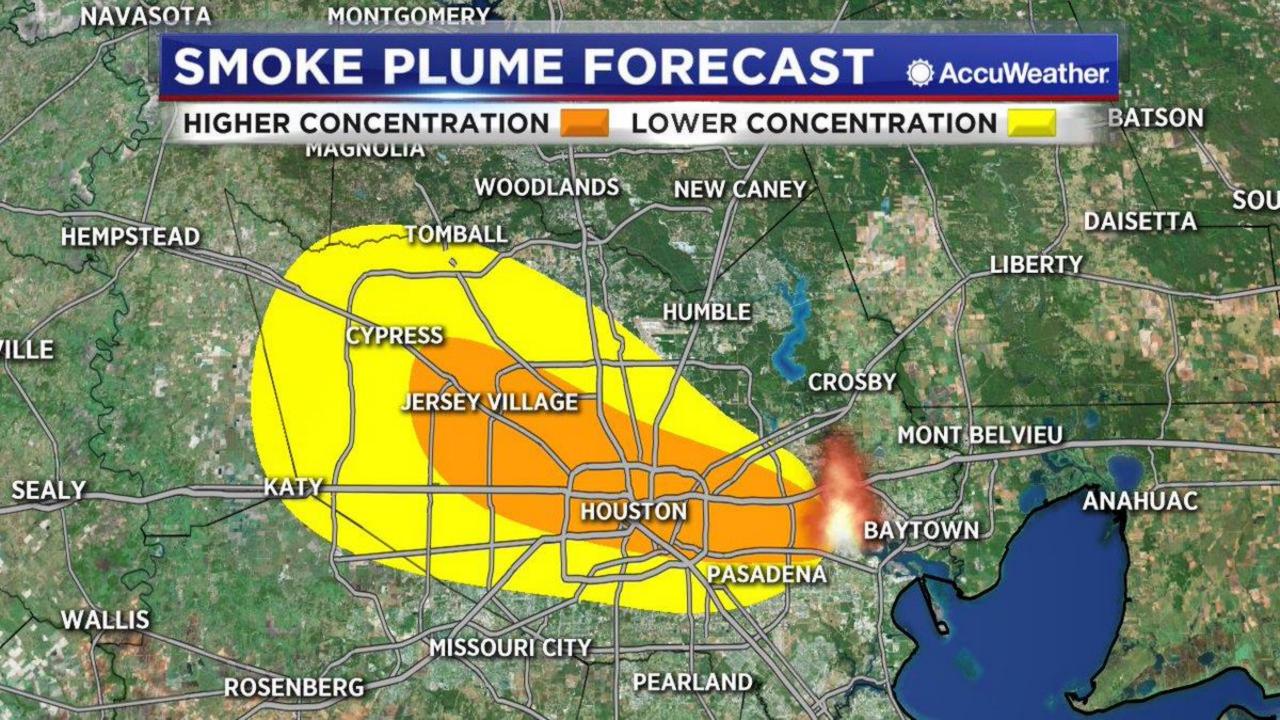

Look for the worst way to interpret your data. Assume no context!

Biggest Pitfall: Lack of Context for Complex Data


Look for the worst way to interpret your data. Assume no context!

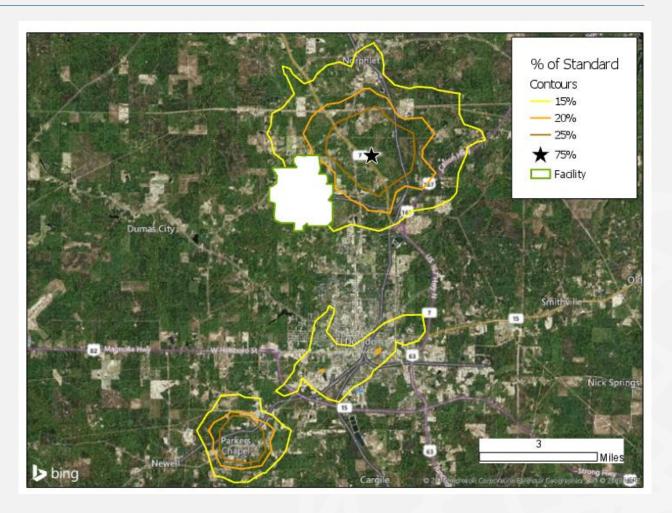
Maps: Red Lines Are Dread Lines


- Red lines give overly negative connotation.
- Color scale should imply high to low (not hot to cold).
- Beware arbitrary concentration intervals.
- Don't display on-property impacts for ambient analyses.
- Show max location to avoid ambiguity.

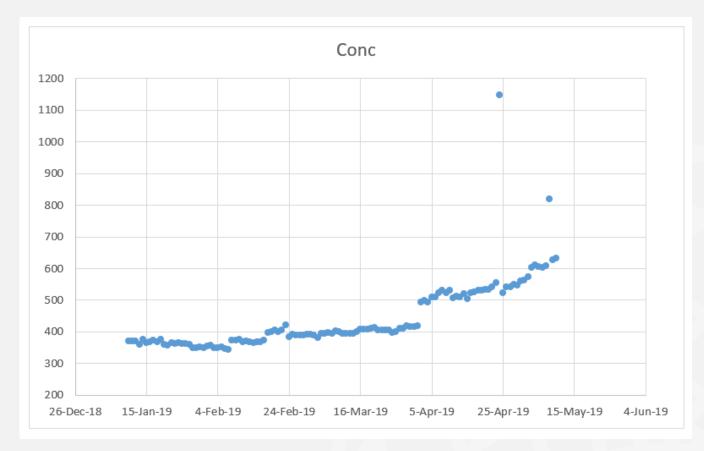


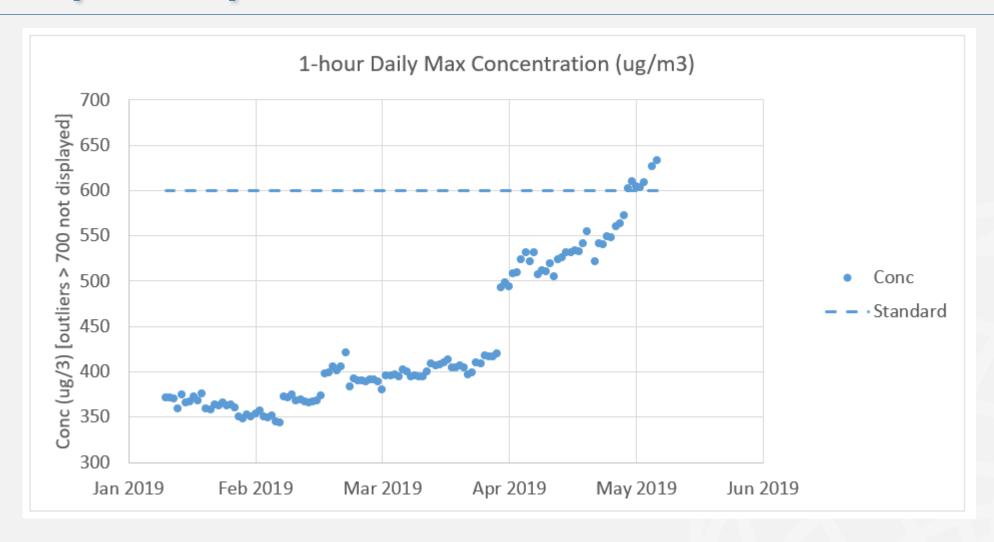
Maps for Regulators

- Demonstrate yellow to brown intervals (just a few lines). Equal intervals which clearly show below standard of concern.
- Use contour lines, not filled areas so underlying map can be seen. On-property cut out.
- Show max location
- Show source locations.
- Map X Y tick marks and map projection. Scale Bar. North arrow.



Maps for the Public


- Demonstrate yellow to brown intervals (as few intervals as possible).
- Use contour lines, not filled areas so underlying map can be seen. Onproperty cut out.
- Show max location
- Use aerial imagery if it looks good, include local roads/highways are reference points.
- Simplify as much as possible: facility symbol rather than individual sources. Avoid detailed map reference points: No need for: Map X Y tick marks and map projection. Scale Bar.


Graphs: Ineffective Case

- X-axis: ambiguous intervals in time
- Y-axis: scale matters (min to max)
 - Consider importance of including/excluding outliers
 - Is data stretched or compressed beyond significance?
 - Y-axis units not labeled, no frame of reference on time period

Graphs: Improved Case

Tables

- Orphaned Asterisks*
- Scientific Notation: Fear the exponent.
- Lots of zeros means a small number. 1E-06 vs 0.000001
- Tables are helpful for executive summaries.
- Your table may end up on a blog.

Table 2. Modeled maximum 1-hour and annual average concentrations, compared with TCEQ Effect Screening Levels

Pollutant	Max. 1-hour Average Modeled Concentration, µg/m³	TCEQ 1-hour ESL, μg/m ³	1-hour ESL exceeded ?	Max. Annual Average Modeled Concentration, µg/m³	TCEQ Annual ESL, µg/m³	Annual ESL exceeded ?
Benzene	472.8	170	Yes	39.8	4.5	Yes
Carbon disulfide	35,942	30	Yes	3025	3	Yes
Carbonyl sulfide	10,404	135*	Yes	875.7	2.6*	Yes
Dimethyl disulfide	7661	20	Yes	644.8	2	Yes
Styrene	454.0	110*	Yes	38.2	140*	No
Toluene	2081	640*	Yes	175.1	1200*	No
1,2,4- Trimethylbenzene	2743	1250	Yes	230.9	125	Yes

http://wackyworldofwaste.blogspot.com/2011/02/air-quality-in-barnett-shale-part-16-dr.html

A Case Study in Air Project Communication

Rick Love, UTC

Pratt & Whitney: air permit = jobs

P&W Geared Turbofan Engine wildly successful

Engine require blades -

Blades are made in Lansing, MI

Lansing needed to expand

Expansion requires permit

Pratt & Whitney: Lansing air permit

Compressing 6 months into 3:

Communication

- DNR management and permit writer
- Site general manager

Modeling

- Expertise, collaboration with DNR
- Iterative flexibility
- Perfect is enemy of good

Coordination

P&W, DNR, consultants always on same page

Questions & Discussion

Connect with Us!

- Browse additional resources: www.naem.org
 - Visit our online webinar library of more than 75 recordings
- Share your feedback: <u>caitlin@naem.org</u>
- Join our social media network:
 - Twitter: @NAEMorg
 - Facebook: www.facebook.com/NAEM.org
 - YouTube: <u>www.youtube.com/NAEMorgTV</u>

